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Results

Theorem (KW)
Alice has access to p = q + r indistinguishable random
oracles, q unreliable and r reliable.

For r = 0, Alice can simulate only an always-heads
or always-tails coin.

For 0 < q ≤ r , any rational bias α is possible, and
nothing else.

For q > r > 0, any algebraic probability α is
possible, and nothing else.

For q = 0 and r > 0, any bias is possible.
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Algebraic α?

Q: Why would anyone want to choose anything with
irrational probabilities?

A: Shows up in applications (e.g. Nash equilibria).

Q: Why don’t we just approximate by rationals?

A: If Alice simulates an (a/b)-biased bit, her
communication with the oracles and her
computation of the bit will both be linear in log b.
In our solution (without rational approximation),
Alice’s communication and computation stay
constant even as her desired accuracy increases.
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Rational α Is Easy

Say α = a
b .

Alice asks party i to pick uniformly a random
xi ∈ Z/bZ.

Heads if

p∑
i=1

xi ∈ {0, ..., a − 1}; tails otherwise.

Works as long as q < p.
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Multilinear Algebra

For p = 3, q = 1, we want to find a {0, 1}-hypermatrix
A and probability vectors β(i) such that, for all
probability vectors x (i),

A(x (1), β(2), β(3)) = A(β(1), x (2), β(3)) = A(β(1), β(2), x (3)) = α.

So, αJ − A is degenerate in the sense of Gelfand,
Kapranov, and Zelevinsky, and the theory of complex
projective duality and stratification shows that α lies on
a zero-dimensional variety defined over Q. But positive
results are more fun. . .
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Multilinear Algebra
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α= ?
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Read our paper!

Play around with our code!

arxiv.org/abs/1009.4188
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