Robust Coin Flipping

Gene Kopp and John Wiltshire-Gordon

University of Chicago
gkopp@uchicago.edu
jwiltshiregordon@uchicago.edu

August 16, 2011

The Problem

Results

Results

q dishonest parties

Results

q dishonest parties

Results

Results

Results

Theorem (KW)

Alice has access to $p=q+r$ indistinguishable random oracles, q unreliable and r reliable.

- For $r=0$, Alice can simulate only an always-heads or always-tails coin.
- For $0<q \leq r$, any rational bias α is possible, and nothing else.
- For $q>r>0$, any algebraic probability α is possible, and nothing else.
- For $q=0$ and $r>0$, any bias is possible.

Algebraic α ?

Q: Why would anyone want to choose anything with irrational probabilities?

Algebraic α ?

Q: Why would anyone want to choose anything with irrational probabilities?
A: Shows up in applications (e.g. Nash equilibria).

Algebraic α ?

Q: Why would anyone want to choose anything with irrational probabilities?
A: Shows up in applications (e.g. Nash equilibria).
Q: Why don't we just approximate by rationals?

Algebraic α ?

Q: Why would anyone want to choose anything with irrational probabilities?
A: Shows up in applications (e.g. Nash equilibria).
Q: Why don't we just approximate by rationals?
A: If Alice simulates an (a / b)-biased bit, her communication with the oracles and her computation of the bit will both be linear in $\log b$.

Algebraic α ?

Q: Why would anyone want to choose anything with irrational probabilities?
A: Shows up in applications (e.g. Nash equilibria).
Q: Why don't we just approximate by rationals?
A: If Alice simulates an (a / b)-biased bit, her communication with the oracles and her computation of the bit will both be linear in $\log b$. In our solution (without rational approximation), Alice's communication and computation stay constant even as her desired accuracy increases.

A Basic Example

A Basic Example

$$
\begin{aligned}
& \begin{aligned}
& \frac{1}{2}(\mathcal{P}(\square)+\ldots+\mathcal{P}(\vdots:))+ \\
& \frac{1}{2}(\mathcal{P}(\bullet)+\ldots+\mathcal{P}(\vdots \vdots))
\end{aligned}
\end{aligned}
$$

A Basic Example

Rational α Is Easy

- Say $\alpha=\frac{a}{b}$.

Rational α Is Easy

- Say $\alpha=\frac{a}{b}$.
- Alice asks party i to pick uniformly a random $x_{i} \in \mathbb{Z} / b \mathbb{Z}$.

Rational α Is Easy

- Say $\alpha=\frac{a}{b}$.
- Alice asks party i to pick uniformly a random $x_{i} \in \mathbb{Z} / b \mathbb{Z}$.
- Heads if $\sum_{i=1}^{p} x_{i} \in\{0, \ldots, a-1\}$; tails otherwise.

Rational α Is Easy

- Say $\alpha=\frac{a}{b}$.
- Alice asks party i to pick uniformly a random $x_{i} \in \mathbb{Z} / b \mathbb{Z}$.
- Heads if $\sum_{i=1}^{p} x_{i} \in\{0, \ldots, a-1\}$; tails otherwise.

Works as long as $q<p$.

Multilinear Algebra

For $p=3, q=1$, we want to find a $\{0,1\}$-hypermatrix A and probability vectors $\beta^{(i)}$ such that, for all probability vectors $x^{(i)}$,

$$
A\left(x^{(1)}, \beta^{(2)}, \beta^{(3)}\right)=A\left(\beta^{(1)}, x^{(2)}, \beta^{(3)}\right)=A\left(\beta^{(1)}, \beta^{(2)}, x^{(3)}\right)=\alpha .
$$

Multilinear Algebra

For $p=3, q=1$, we want to find a $\{0,1\}$-hypermatrix A and probability vectors $\beta^{(i)}$ such that, for all probability vectors $x^{(i)}$,

$$
A\left(x^{(1)}, \beta^{(2)}, \beta^{(3)}\right)=A\left(\beta^{(1)}, x^{(2)}, \beta^{(3)}\right)=A\left(\beta^{(1)}, \beta^{(2)}, x^{(3)}\right)=\alpha .
$$

So, $\alpha J-A$ is degenerate in the sense of Gelfand, Kapranov, and Zelevinsky, and the theory of complex projective duality and stratification shows that α lies on a zero-dimensional variety defined over \mathbb{Q}. But positive results are more fun...

Multilinear Algebra

$$
\begin{aligned}
A & =\left(\begin{array}{lll|lll}
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1
\end{array}\right) \\
\beta^{(1)} & =\left(\left.\frac{1}{2}(-1+\sqrt{5}) \right\rvert\, \frac{1}{2}(3-\sqrt{5})\right) \\
\beta^{(2)} & =\binom{\frac{1}{2}(3-\sqrt{5})}{\frac{1}{2}(-1+\sqrt{5})} \\
\beta^{(3)} & =\left(\begin{array}{lll}
\frac{1}{10}(5-\sqrt{5}) & \frac{1}{10}(5-\sqrt{5}) & \left.\frac{1}{5} \sqrt{5}\right)
\end{array}\right.
\end{aligned}
$$

$\alpha=$?

- Read our paper!
- Play around with our code!
- arxiv.org/abs/1009.4188

