Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption

2011 / 8 / 16

Tatsuaki Okamoto (NTT), Katsuyuki Takashima (Mitsubishi Electric).

Inner Product Encryption (IPE) [KSW08]

$$f_{\vec{v}}(\vec{x}) = 1 \text{ iff } \vec{x} \cdot \vec{v} = 0$$

 $f_{\vec{v}}$: predicate with $\vec{v} \in \mathbb{F}_q^n$, $\vec{x} \in \mathbb{F}_q^n$: attribute

- Setup: pk: (master) public key, sk: (master) secret key
- KeyGen(pk, sk, \vec{v}): sk_{\vec{v}}: secret key for \vec{v}
- ▶ Enc(pk, \vec{x}, m): $c_{\vec{x}}$: ciphertext for \vec{x}
- ▶ $Dec(pk, sk_{\vec{v}}, c)$: plaintext m or \perp

m can be decrypted iff $f_{\vec{v}}(\vec{x}) = 1$, i.e., $\vec{x} \cdot \vec{v} = 0$

Some additional information on \vec{x} may be revealed to a person with a matching key sk_v, i.e., $f_{\vec{v}}(\vec{x}) = 1$.

No additional information on \vec{x} is revealed even to any person with a matching key sk_v, i.e., $f_{\vec{v}}(\vec{x}) = 1$.

Previous works for (Pairing-Based) IPE

[KSW08]: Fully attribute-hiding but selectively secure IPE

LOSTW10] : Adaptively secure but weakly attributehiding IPE based on a non-standard assumption

IPE based on the DLIN assumption
OT10]: Adaptively secure but weakly attribute-hiding

<u>Our result</u>

Adaptively secure and fully attribute-hiding IPE based on the DLIN assumption

Thank You !