A brief chat about approximate GCDs

Henry Cohn and Nadia Heninger

Approximate GCD problem

You get:
A bunch of near multiples of p.

You have to:

Find p.

Motivation: Factoring RSA modulus with partial information. [Howgrave-Graham 01]

Fully homomorphic encryption over the integers

[van Dijk, Gentry, Halevi, Vaikuntanathan Eurocrypt 2010]
[Coron, Mandal, Naccache, Tibouchi Crypto 2011]

Assumption:

Approximate GCD is as hard for m samples as for 2 samples.
Best way to break is to brute force over noise.

Our work

- Lattice-based algorithm for approximate GCDs with many samples.
- Multivariate extension of Coppersmith/Howgrave-Graham technique.
- As number of samples increases, amount of error tolerated increases.

- (Bonus: New list-decoding algorithm for Parvaresh-Vardy, Guruswami-Rudra, and other error-correcting codes.)

Applications to fully homomorphic encryption

Coron et al. key settings:
Assuming LLL approximation of $1.04^{\text {dim } L}$:

key size	lattice dimension
toy	165
small	595
medium	2211
large	9591

van Dijk et al. asymptotic settings:
Lattice approximation of $2^{\operatorname{dim} L^{2 / 3}}$ breaks suggested parameters.
Any polynomial key setting can be broken by subexponential lattice approximation ($2^{\operatorname{dim} L^{1 / c}}$).
(Worst case enumeration takes 2^{λ} time for security parameter λ.)

Approximate common divisors via lattices

http://eprint.iacr.org/2011/437

