A brief chat about approximate GCDs

Henry Cohn and Nadia Heninger

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Approximate GCD problem

You get:

A bunch of near multiples of p.

You have to:

Find p.

Motivation: Factoring RSA modulus with partial information. [Howgrave-Graham 01] Fully homomorphic encryption over the integers

[van Dijk, Gentry, Halevi, Vaikuntanathan Eurocrypt 2010] [Coron, Mandal, Naccache, Tibouchi Crypto 2011]

Assumption:

Approximate GCD is as hard for m samples as for 2 samples.

Best way to break is to brute force over noise.

 $hyperbole and a half.blogs {\tt pot.com}$

Our work

- Lattice-based algorithm for approximate GCDs with many samples.
- Multivariate extension of Coppersmith/Howgrave-Graham technique.
- As number of samples increases, amount of error tolerated increases.

 (Bonus: New list-decoding algorithm for Parvaresh-Vardy, Guruswami-Rudra, and other error-correcting codes.)

Applications to fully homomorphic encryption

Coron et al. key settings:

Assuming LLL approximation of 1.04^{dim L}:

key size	lattice dimension
toy	165
small	595
medium	2211
large	9591

van Dijk et al. asymptotic settings:

Lattice approximation of $2^{\dim L^{2/3}}$ breaks suggested parameters.

Any polynomial key setting can be broken by subexponential lattice approximation $(2^{\dim L^{1/c}})$.

(Worst case enumeration takes 2^{λ} time for security parameter λ .)

Approximate common divisors via lattices

http://eprint.iacr.org/2011/437

