Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller

Daniele Micciancio¹ Chris Peikert²

¹UC San Diego

²Georgia Tech

CRYPTO Rump Session 16 Aug 2011

Lattice-Based One-Way Functions

▶ Public key
$$\left[\cdots \mathbf{A} \cdots\right] \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}$$
 for $q = \mathsf{poly}(n), m = O(n \log q)$

Lattice-Based One-Way Functions

► Public key
$$\left[\dots \mathbf{A} \dots \right] \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}$$
 for $q = \text{poly}(n), m = O(n \log q)$
 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q$
(surjective)
OWF if SIS hard [Ajtai'96]
 $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q$
(injective)
OWF if LWE hard [Regev'05]

Lattice-Based One-Way Functions

► Public key
$$\left[\dots \mathbf{A} \dots \right] \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}$$
 for $q = \text{poly}(n), m = O(n \log q)$
 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q$
(surjective)
OWF if SIS hard [Ajtai'96]
 $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q$
(injective)
OWF if LWE hard [Regev'05]

► f_A , g_A in forward direction yields CRHFs, IND-CPA encryption (... and not much else)

• Many cryptographic applications need to invert f_A and/or g_A .

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $\mathbf{b}^t = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$: find the unique preimage \mathbf{s}, \mathbf{e}

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$:

sample Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$

Invert $\mathbf{b}^t = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$: find the unique preimage \mathbf{s}, \mathbf{e}

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$: sample Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ Invert $\mathbf{b}^t = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$: find the unique preimage \mathbf{s}, \mathbf{e}

How? Use a "strong trapdoor" for A: a short basis [Babai'86,GGH'97,Klein'01,GPV'08,P'10]

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$: sample Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ Invert $\mathbf{b}^t = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$: find the unique preimage \mathbf{s}, \mathbf{e}

- How? Use a "strong trapdoor" for A: a short basis [Babai'86,GGH'97,Klein'01,GPV'08,P'10]
- Crypto applications: [GPV'08, PW'08, PV'08, PVW'08, P'09, CHKP'10, R'10, ABB'10a, GHV'10, B'10, ABB'10b, GKV'10, BF'11a, BF'11b, OPW'11, ...]

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$: sample Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ Invert $\mathbf{b}^t = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$: find the unique preimage \mathbf{s}, \mathbf{e}

- How? Use a "strong trapdoor" for A: a short basis [Babai'86,GGH'97,Klein'01,GPV'08,P'10]
- Crypto applications: [GPV'08, PW'08, PV'08, PVW'08, P'09, CHKP'10, R'10, ABB'10a, GHV'10, B'10, ABB'10b, GKV'10, BF'11a, BF'11b, OPW'11, ...]

Some Practical Drawbacks...

K Generating A with short basis is complicated & slow [Ajtai'99, AP'09]

Many cryptographic applications need to invert f_A and/or g_A.

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$: sample Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ Invert $\mathbf{b}^t = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$: find the unique preimage \mathbf{s}, \mathbf{e}

- How? Use a "strong trapdoor" for A: a short basis [Babai'86,GGH'97,Klein'01,GPV'08,P'10]
- Crypto applications: [GPV'08, PW'08, PV'08, PVW'08, P'09, CHKP'10, R'10, ABB'10a, GHV'10, B'10, ABB'10b, GKV'10, BF'11a, BF'11b, OPW'11, ...]

Some Practical Drawbacks...

- K Generating A with short basis is complicated & slow [Ajtai'99, AP'09]
- Inversion algorithms either are sequential & need bigints, or are for suboptimal dimension m and preimage "quality."

- ✓ Much, much simpler & faster
 - ★ To generate: one matrix mult.
 - * To invert f_A , g_A : efficient, highly parallel, & mostly offline

- ✓ Much, much simpler & faster
 - ★ To generate: one matrix mult.
 - * To invert f_A , g_A : efficient, highly parallel, & mostly offline
- ✓ Tighter, more secure parameters
 - * Asymptotically optimal with small constant factors
 - ★ Improvements: 8x in dim m, 112x in "quality" \Rightarrow 50x in keysize

New trapdoor generation and inversion algorithms:

- ✓ Much, much simpler & faster
 - ★ To generate: one matrix mult.
 - * To invert f_A , g_A : efficient, highly parallel, & mostly offline
- ✓ Tighter, more secure parameters
 - Asymptotically optimal with small constant factors
 - ★ Improvements: 8x in dim m, 112x in "quality" \Rightarrow 50x in keysize

✓ <u>New trapdoor notion</u> (not a basis!): 4x smaller, easier delegation

- ✓ Much, much simpler & faster
 - ★ To generate: one matrix mult.
 - * To invert f_A , g_A : efficient, highly parallel, & mostly offline
- ✓ Tighter, more secure parameters
 - Asymptotically optimal with small constant factors
 - ★ Improvements: 8x in dim m, 112x in "quality" \Rightarrow 50x in keysize
- ✓ <u>New trapdoor notion</u> (not a basis!): 4x smaller, easier delegation
- ✓ <u>More efficient applications</u> beyond "black box" improvements:
 - CCA encryption with smaller keys (subsumes [PW'08,P'09,ABB'10a])
 - * Short, standard-model signatures (improves [CHKP'10,R'10,B'10])

- **1** Start from a special (fixed, public) lattice defined by G.
 - * Give very fast, parallel, offline algorithms for $f_{\rm G}^{-1}$, $g_{\rm G}^{-1}$
 - * Concretely,

$$\mathbf{G} = \mathbf{I}_n \otimes [1, 2, 4, \dots, \frac{q}{2}] = \begin{bmatrix} 1 \ 2 \ \cdots \ \frac{q}{2} & & \\ & 1 \ 2 \ \cdots \ \frac{q}{2} & \\ & & \ddots & \\ & & & 1 \ 2 \ \cdots \ \frac{q}{2} \end{bmatrix}$$

- **1** Start from a special (fixed, public) lattice defined by **G**.
 - \star Give very fast, parallel, offline algorithms for $f_{\rm G}^{-1}$, $g_{\rm G}^{-1}$
 - * Concretely,

$$\mathbf{G} = \mathbf{I}_n \otimes [1, 2, 4, \dots, \frac{q}{2}] = \begin{bmatrix} 1 \ 2 \ \cdots \ \frac{q}{2} & & \\ & 1 \ 2 \ \cdots \ \frac{q}{2} & \\ & & \ddots & \\ & & & 1 \ 2 \ \cdots \ \frac{q}{2} \end{bmatrix}$$

2 Randomize $G \leftrightarrow A$ with a "nice" unimodular transformation:

$$\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G}] \begin{bmatrix} \mathbf{I} & \mathbf{R} \\ & \mathbf{I} \end{bmatrix} = [\bar{\mathbf{A}} \mid \mathbf{G} + \bar{\mathbf{A}}\mathbf{R}]$$

- 1 Start from a special (fixed, public) lattice defined by G.
 - * Give very fast, parallel, offline algorithms for $f_{\rm G}^{-1}$, $g_{\rm G}^{-1}$
 - Concretely,

$$\mathbf{G} = \mathbf{I}_n \otimes [1, 2, 4, \dots, \frac{q}{2}] = \begin{bmatrix} 1 \ 2 \ \cdots \ \frac{q}{2} & & \\ & 1 \ 2 \ \cdots \ \frac{q}{2} & \\ & & \ddots & \\ & & & 1 \ 2 \ \cdots \ \frac{q}{2} \end{bmatrix}$$

2 Randomize $G \leftrightarrow A$ with a "nice" unimodular transformation:

$$\mathbf{A} = \begin{bmatrix} \bar{\mathbf{A}} \mid \mathbf{G} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{R} \\ & \mathbf{I} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{A}} \mid \mathbf{G} + \bar{\mathbf{A}}\mathbf{R} \end{bmatrix}$$

3 Efficiently reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} with pre-/post-processing

- 1 Start from a special (fixed, public) lattice defined by G.
 - * Give very fast, parallel, offline algorithms for $f_{\rm G}^{-1}$, $g_{\rm G}^{-1}$
 - ★ Concretely,

$$\mathbf{G} = \mathbf{I}_n \otimes [1, 2, 4, \dots, \frac{q}{2}] = \begin{bmatrix} 1 \ 2 \ \cdots \ \frac{q}{2} \\ & 1 \ 2 \ \cdots \ \frac{q}{2} \\ & & \ddots \\ & & & 1 \ 2 \ \cdots \ \frac{q}{2} \end{bmatrix}$$

2 Randomize $G \leftrightarrow A$ with a "nice" unimodular transformation:

$$\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{G}] \begin{bmatrix} \mathbf{I} & \mathbf{R} \\ & \mathbf{I} \end{bmatrix} = [\bar{\mathbf{A}} \mid \mathbf{G} + \bar{\mathbf{A}}\mathbf{R}]$$

3 Efficiently reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} with pre-/post-processing

Coming very soon to an eprint near you...