Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller

Daniele Micciancio ${ }^{1} \quad$ Chris Peikert ${ }^{2}$

${ }^{1}$ UC San Diego
${ }^{2}$ Georgia Tech

CRYPTO Rump Session 16 Aug 2011

Lattice-Based One-Way Functions

- Public key $[\cdots \mathbf{A} \cdots] \stackrel{\&}{\stackrel{\&}{\leftarrow} \mathbb{Z}_{q}^{n \times m} \text { for } q=\operatorname{poly}(n), m=O(n \log q)}$

Lattice-Based One-Way Functions

- Public key $[\cdots \mathbf{A} \cdots] \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=O(n \log q)$

$$
\begin{gathered}
f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x} \bmod q \\
(\text { surjective })
\end{gathered}
$$

OWF if SIS hard [Ajtai'96]

$$
\begin{gathered}
g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t} \bmod q \\
\text { (injective) }
\end{gathered}
$$

OWF if LWE hard [Regev'05]

Lattice-Based One-Way Functions

- Public key $[\cdots \mathbf{A} \cdots] \stackrel{\&}{\stackrel{\&}{\gtrless}} \mathbb{Z}_{q}^{n \times m}$ for $q=\operatorname{poly}(n), m=O(n \log q)$

$$
\begin{array}{c|c}
f_{\mathrm{A}}(\mathbf{x})=\mathbf{A x} \bmod q & g_{\mathrm{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t} \bmod q \\
\begin{array}{c}
\text { (surjective) }
\end{array} & \text { (injective) } \\
\text { OWF if SIS hard [Aitai'96] } & \text { OWF if LWE hard [Regev'05] }
\end{array}
$$

$-f_{\mathrm{A}}, g_{\mathrm{A}}$ in forward direction yields CRHFs, IND-CPA encryption (... and not much else)

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or $g_{\mathbf{A}}$.

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or $g_{\mathbf{A}}$.

$$
\text { Invert } \mathbf{b}^{t}=g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}
$$

find the unique preimage s,e

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $\mathbf{u}=f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}:$
sample Gaussian $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$

Invert $\mathbf{b}^{t}=g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$: find the unique preimage s,e

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $\mathbf{u}=f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}:$ sample Gaussian $\mathbf{x} \leftarrow f_{\mathrm{A}}^{-1}(\mathbf{u})$

Invert $\mathbf{b}^{t}=g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$:
find the unique preimage s, e

- How? Use a "strong trapdoor" for A: a short basis
[Babai'86,GGH'97,Klein'01,GPV'08,P'10]

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $\mathbf{u}=f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}:$ sample Gaussian $\mathbf{x} \leftarrow f_{\mathrm{A}}^{-1}(\mathbf{u})$

Invert $\mathbf{b}^{t}=g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$: find the unique preimage s,e

- How? Use a "strong trapdoor" for A: a short basis [Babai'86,GGH'97,Klein'01,GPV'08,P'10]
- Crypto applications: [GPV'08, PW'08, PV'08, PVW'08, P'09, CHKP'10, R'10, ABB'10a, GHV'10, B'10, ABB'10b, GKV'10, BF'11a, BF'11b, OPW'11, ...]

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $\mathbf{u}=f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}:$
sample Gaussian $\mathbf{x} \leftarrow f_{\mathrm{A}}^{-1}(\mathbf{u})$

Invert $\mathbf{b}^{t}=g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$: find the unique preimage s,e

- How? Use a "strong trapdoor" for A: a short basis [Babai'86,GGH'97,Klein'01,GPV'08,P'10]
- Crypto applications: [GPV'08, PW'08, PV'08, PVW'08, P'09, CHKP'10, R'10, ABB'10a, GHV'10, B'10, ABB'10b, GKV'10, BF'11a, BF'11b, OPW'11, ...]

Some Practical Drawbacks...

X Generating A with short basis is complicated \& slow [Ajtai'99,AP'09]

Trapdoor Inversion

- Many cryptographic applications need to invert f_{A} and/or g_{A}.

Invert $\mathbf{u}=f_{\mathbf{A}}(\mathbf{x})=\mathbf{A x}:$
sample Gaussian $\mathbf{x} \leftarrow f_{\mathrm{A}}^{-1}(\mathbf{u})$

Invert $\mathbf{b}^{t}=g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{s}^{t} \mathbf{A}+\mathbf{e}^{t}$:
find the unique preimage s,e

- How? Use a "strong trapdoor" for A: a short basis [Babai'86,GGH'97,Klein'01,GPV'08,P'10]
- Crypto applications: [GPV'08, PW'08, PV'08, PVW'08, P'09, CHKP'10, R'10, ABB'10a, GHV'10, B'10, ABB'10b, GKV'10, BF'11a, BF'11b, OPW'11, ...]

Some Practical Drawbacks...

x Generating A with short basis is complicated \& slow [Ajtai'99,AP'09]
x Inversion algorithms either are sequential \& need bigints, or are for suboptimal dimension m and preimage "quality."

Our Contributions

New trapdoor generation and inversion algorithms:

Our Contributions

New trapdoor generation and inversion algorithms:
\checkmark Much, much simpler \& faster

* To generate: one matrix mult.
\star To invert $f_{\mathrm{A}}, g_{\mathrm{A}}$: efficient, highly parallel, \& mostly offline

Our Contributions

New trapdoor generation and inversion algorithms:
\checkmark Much, much simpler \& faster

* To generate: one matrix mult.
* To invert $f_{\mathrm{A}}, g_{\mathrm{A}}$: efficient, highly parallel, \& mostly offline
\checkmark Tighter, more secure parameters
* Asymptotically optimal with small constant factors
\star Improvements: $8 x$ in $\operatorname{dim} m, 112 x$ in "quality" $\Rightarrow 50 x$ in keysize

Our Contributions

New trapdoor generation and inversion algorithms:
\checkmark Much, much simpler \& faster

* To generate: one matrix mult.
* To invert $f_{\mathrm{A}}, g_{\mathrm{A}}$: efficient, highly parallel, \& mostly offline
\checkmark Tighter, more secure parameters
* Asymptotically optimal with small constant factors
\star Improvements: $8 x$ in $\operatorname{dim} m, 112 x$ in "quality" $\Rightarrow 50 x$ in keysize
\checkmark New trapdoor notion (not a basis!): 4x smaller, easier delegation

Our Contributions

New trapdoor generation and inversion algorithms:
\checkmark Much, much simpler \& faster

* To generate: one matrix mult.
\star To invert $f_{\mathrm{A}}, g_{\mathrm{A}}$: efficient, highly parallel, \& mostly offline
\checkmark Tighter, more secure parameters
* Asymptotically optimal with small constant factors
* Improvements: $8 x$ in $\operatorname{dim} m, 112 x$ in "quality" $\Rightarrow 50 x$ in keysize
\checkmark New trapdoor notion (not a basis!): 4x smaller, easier delegation
\checkmark More efficient applications beyond "black box" improvements:
* CCA encryption with smaller keys (subsumes [PW'08,P'09,ABB'10a])
\star Short, standard-model signatures (improves [CHKP'10,R'10,B'10])

Trapdoor Generation and Algorithms

(1) Start from a special (fixed, public) lattice defined by G.

* Give very fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$
* Concretely,

$$
\mathbf{G}=\mathbf{I}_{n} \otimes\left[1,2,4, \ldots, \frac{q}{2}\right]=\left[\begin{array}{llllll}
12 \cdots \frac{q}{2} & & & & \\
& & 12 \cdots \frac{q}{2} & & \\
& & & \ddots & \\
& & & & 12 \ldots & \\
& & & & & \\
& &
\end{array}\right]
$$

Trapdoor Generation and Algorithms

(1) Start from a special (fixed, public) lattice defined by G.
\star Give very fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

* Concretely,

$$
\mathbf{G}=\mathbf{I}_{n} \otimes\left[1,2,4, \ldots, \frac{q}{2}\right]=\left[\begin{array}{llllll}
12 \ldots \frac{q}{2} & & & & \\
& & 12 \ldots & \frac{q}{2} & & \\
& & & \ddots & \\
& & & & 12 \ldots & \\
& & & & & \\
& &
\end{array}\right]
$$

(2) Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$ with a "nice" unimodular transformation:

$$
\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{R} \\
& \mathbf{I}
\end{array}\right]=[\overline{\mathbf{A}} \mid \mathbf{G}+\overline{\mathbf{A}} \mathbf{R}]
$$

Trapdoor Generation and Algorithms

(1) Start from a special (fixed, public) lattice defined by G.
\star Give very fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

* Concretely,

$$
\mathbf{G}=\mathbf{I}_{n} \otimes\left[1,2,4, \ldots, \frac{q}{2}\right]=\left[\begin{array}{llllll}
12 \ldots \frac{q}{2} & & & & \\
& & 12 \ldots & \frac{q}{2} & & \\
& & & \ddots & \\
& & & & 12 \ldots & \\
& & & & & \\
& &
\end{array}\right]
$$

(2) Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$ with a "nice" unimodular transformation:

$$
\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{R} \\
& \mathbf{I}
\end{array}\right]=[\overline{\mathbf{A}} \mid \mathbf{G}+\overline{\mathbf{A}} \mathbf{R}]
$$

(3) Efficiently reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$ with pre-/post-processing

Trapdoor Generation and Algorithms

(1) Start from a special (fixed, public) lattice defined by G.
\star Give very fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

* Concretely,

$$
\mathbf{G}=\mathbf{I}_{n} \otimes\left[1,2,4, \ldots, \frac{q}{2}\right]=\left[\begin{array}{llllll}
12 \cdots \frac{q}{2} & & & & \\
& & 12 \ldots & \frac{q}{2} & & \\
& & & \ddots & \\
& & & & 12 \cdots & \\
& & & & & \\
& &
\end{array}\right]
$$

(2) Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$ with a "nice" unimodular transformation:

$$
\mathbf{A}=[\overline{\mathbf{A}} \mid \mathbf{G}]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{R} \\
& \mathbf{I}
\end{array}\right]=[\overline{\mathbf{A}} \mid \mathbf{G}+\overline{\mathbf{A}} \mathbf{R}]
$$

(3) Efficiently reduce $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$ with pre-/post-processing

Coming very soon to an eprint near you...

