HBN: A MIM-SECURE HB-LIKE PROTOCOL

Carl Bosley, Stevens Institute of Technology Joint work with Antonio Nicolosi and Kristiyan Haralambiev

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

• [HB01] passively secure

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure
 - [GRS05] MIM attack

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB+ actively secure
 - [GRS05] MIM attack
- Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure
 - [GRS05] MIM attack
- Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB
 - "If I call a tail a leg, how many legs does a dog have?"

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure
 - [GRS05] MIM attack
- Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB
 - "If I call a tail a leg, how many legs does a dog have?"
 - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure
 - [GRS05] MIM attack
- Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB
 - "If I call a tail a leg, how many legs does a dog have?"
 - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk
 - [GRS08a,FS09] Actually, **not** secure

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure
 - [GRS05] MIM attack
- Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB
 - · "If I call a tail a leg, how many legs does a dog have?"
 - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk
 - [GRS08a,FS09] Actually, not secure
- [GRS08b] random-HB# MIM-secure

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure
 - [GRS05] MIM attack
- Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB
 - · "If I call a tail a leg, how many legs does a dog have?"
 - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk
 - [GRS08a,FS09] Actually, not secure
- [GRS08b] random-HB# MIM-secure
 - [OOV08] Actually, it's **not** MIM-secure

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure
 - [GRS05] MIM attack
- Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB
 - · "If I call a tail a leg, how many legs does a dog have?"
 - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk
 - [GRS08a,FS09] Actually, not secure
- [GRS08b] random-HB# MIM-secure
 - [OOV08] Actually, it's **not** MIM-secure
- [KPCJVII] MAC1, MAC2 provably MIM-secure

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure
 - [GRS05] MIM attack
- Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB
 - · "If I call a tail a leg, how many legs does a dog have?"
 - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk
 - [GRS08a,FS09] Actually, not secure
- [GRS08b] random-HB# MIM-secure
 - [OOV08] Actually, it's **not** MIM-secure
- [KPCJVII] MAC1, MAC2 provably MIM-secure
 - but rather complicated

Setting

- RFID Authentication: Tag=Prover, Reader=Verifier
 - Hardness based on Learning Parity with Noise

- [HB01] passively secure
- [JW05] HB⁺ actively secure
 - [GRS05] MIM attack
- Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB
 - · "If I call a tail a leg, how many legs does a dog have?"
 - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk
 - [GRS08a,FS09] Actually, not secure
- [GRS08b] random-HB# MIM-secure
 - [OOV08] Actually, it's **not** MIM-secure
- [KPCJVII] MAC1, MAC2 provably MIM-secure
 - but rather complicated

[BHN] HBN Protocol

- · Tools:
 - \oplus : $[0,1] \times [0,1] -> [0,1]$
 - ·LSN <=> LPN
 - Probabilistic Verification
 - Sequence of Games

- HB is extremely simple:
 - Tag computes noisy parity.

- HB is extremely simple:
 - Tag computes noisy parity.
- **HBN** is extremely simple:
 - Tag computes noisy bilinear function.

- HB is extremely simple:
 - Tag computes noisy parity.
- **HBN** is extremely simple:
 - Tag computes noisy bilinear function.
- Interestingly, **HB**^N is not the first bilinear protocol: [KPCJVII] can be rewritten as applying a noisy bilinear map

- HB is extremely simple:
 - Tag computes noisy parity.
- HBN is extremely simple:
 - Tag computes noisy bilinear function.
- Interestingly, **HB**^N is not the first bilinear protocol: [KPCJVII] can be rewritten as applying a noisy bilinear map
- New technique for defending against verify queries: Probabilistic Verification.
 - \Re computes $\mathbf{w}_i = \mathbf{a}^T \mathbf{X} \mathbf{b} + \mathbf{f}_i$

• Define \oplus : $[0,1] \times [0,1] \rightarrow [0,1]$: Ber_{\varepsilon} \oplus Ber_{\varphi} = Ber_{\varepsilon}

- Define \oplus : $[0,1] \times [0,1] \rightarrow [0,1]$: Ber_{\varepsilon} \oplus Ber_{\varphi} = Ber_{\varepsilon}
 - $3(q-1) + q(3-1) = q \oplus 3$
 - \oplus restricted to $Z_2 \times Z_2$ is equivalent to \oplus

- Define \oplus : $[0,1] \times [0,1] \rightarrow [0,1]$: Ber_{\varepsilon} \oplus Ber_{\varepsilon} = Ber_{\varepsilon}
 - $3(q-1) + q(3-1) = q \oplus 3$
 - \oplus restricted to $Z_2 \times Z_2$ is equivalent to \oplus
 - $\frac{1}{2}$ annihilates: $\rho \oplus \frac{1}{2} = \frac{1}{2}$

- Define \oplus : $[0,1] \times [0,1] \rightarrow [0,1]$: Ber_{\varepsilon} \oplus Ber_{\varepsilon} = Ber_{\varepsilon}
 - $3(q-1) + q(3-1) = q \oplus 3 \cdot$
 - \oplus restricted to $Z_2 \times Z_2$ is equivalent to \oplus
 - $\frac{1}{2}$ annihilates: $\rho \oplus \frac{1}{2} = \frac{1}{2}$
- $Pr[Ber_{\varepsilon} = b] = b \oplus \overline{\varepsilon}$
- $Pr[(\mathbf{a},b) \leftarrow LPN_{\varepsilon}^{\mathbf{x}}] = 2^{-n}(\mathbf{a}^{\mathsf{T}}\mathbf{x} \oplus b \oplus \overline{\varepsilon})$
- $\Pr[(\mathbf{a},b) \leftarrow LSN_{\rho,\epsilon}^{\mathbf{x}}] = (b \oplus \overline{\rho})(b \oplus \mathbf{a}^{\mathsf{T}}\mathbf{x} \oplus \overline{\epsilon})2^{-n+1}$

LPN_E \leq LSN_{p,\epsilon} \leq LPN_E

- LSN_{ρ,ε}* is a method of producing a noisy subspace for a, using LPN_ε*
 - · Obtain b from Berp
 - Sample LPN_ε* until b=b
- We can annihilate, conditionally
 - b \leftarrow Ber $\frac{1}{2}$ when $\mathbf{a}^{\mathsf{T}}\mathbf{x} = 1$

Game Sequence: Overall Idea

- · Phase I & II keys: X_j & Y_j
 - Initially, $X_0 = Y_0$
- At each step, add random rank I matrix:
 - $(X,Y) \rightarrow (X+(t+r)s^{T},Y+ts^{T}) \rightarrow (X,Y+rs^{T})$
 - · With each layer, X_j and Y_j grow further apart
 - after sufficiently many applications, $a^T X_j b^T$ is completely independent of $a^T Y_j b^T$

- MIM-secure HB-like protocol
 - Simple, Efficient
 - Technical tools may be useful elsewhere
 - Available on eprint: 2011/350

- MIM-secure HB-like protocol
 - Simple, Efficient
 - Technical tools may be useful elsewhere
 - Available on eprint: 2011/350
- Open question: Improve efficiency
 - HB, HB⁺ are O(n²) computation

- MIM-secure HB-like protocol
 - Simple, Efficient
 - Technical tools may be useful elsewhere
 - Available on eprint: 2011/350
- Open question: Improve efficiency
 - HB, HB⁺ are O(n²) computation
 - HBN and [KPCJV] achieve O(n3) computation

- MIM-secure HB-like protocol
 - Simple, Efficient
 - Technical tools may be useful elsewhere
 - Available on eprint: 2011/350
- Open question: Improve efficiency
 - HB, HB⁺ are O(n²) computation
 - HBN and [KPCJV] achieve O(n³) computation
 - In upcoming work [BN] obtain $\mathbf{\omega}(n^2)$
 - via ω(log n) rank matrix key
 - and Four Russians Matrix Multiplication trick