HBN: A MIM-SECURE HB-LIKE PROTOCOL Carl Bosley, Stevens Institute of Technology Joint work with Antonio Nicolosi and Kristiyan Haralambiev ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise #### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise • [HB01] passively secure ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure #### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure - [GRS05] MIM attack #### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB+ actively secure - [GRS05] MIM attack - Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure - [GRS05] MIM attack - Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB - "If I call a tail a leg, how many legs does a dog have?" ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure - [GRS05] MIM attack - Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB - "If I call a tail a leg, how many legs does a dog have?" - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure - [GRS05] MIM attack - Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB - "If I call a tail a leg, how many legs does a dog have?" - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk - [GRS08a,FS09] Actually, **not** secure ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure - [GRS05] MIM attack - Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB - · "If I call a tail a leg, how many legs does a dog have?" - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk - [GRS08a,FS09] Actually, not secure - [GRS08b] random-HB# MIM-secure ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure - [GRS05] MIM attack - Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB - · "If I call a tail a leg, how many legs does a dog have?" - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk - [GRS08a,FS09] Actually, not secure - [GRS08b] random-HB# MIM-secure - [OOV08] Actually, it's **not** MIM-secure ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure - [GRS05] MIM attack - Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB - · "If I call a tail a leg, how many legs does a dog have?" - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk - [GRS08a,FS09] Actually, not secure - [GRS08b] random-HB# MIM-secure - [OOV08] Actually, it's **not** MIM-secure - [KPCJVII] MAC1, MAC2 provably MIM-secure ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure - [GRS05] MIM attack - Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB - · "If I call a tail a leg, how many legs does a dog have?" - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk - [GRS08a,FS09] Actually, not secure - [GRS08b] random-HB# MIM-secure - [OOV08] Actually, it's **not** MIM-secure - [KPCJVII] MAC1, MAC2 provably MIM-secure - but rather complicated ### Setting - RFID Authentication: Tag=Prover, Reader=Verifier - Hardness based on Learning Parity with Noise - [HB01] passively secure - [JW05] HB⁺ actively secure - [GRS05] MIM attack - Several MIM-secure variants: HB*, HB-MP, HB-MP', Trusted-HB - · "If I call a tail a leg, how many legs does a dog have?" - Lincoln may or may not have said that, but it is linked to him by 1862: see snopes.com: http://tinyurl.com/3eff3nk - [GRS08a,FS09] Actually, not secure - [GRS08b] random-HB# MIM-secure - [OOV08] Actually, it's **not** MIM-secure - [KPCJVII] MAC1, MAC2 provably MIM-secure - but rather complicated # [BHN] HBN Protocol - · Tools: - \oplus : $[0,1] \times [0,1] -> [0,1]$ - ·LSN <=> LPN - Probabilistic Verification - Sequence of Games - HB is extremely simple: - Tag computes noisy parity. - HB is extremely simple: - Tag computes noisy parity. - **HBN** is extremely simple: - Tag computes noisy bilinear function. - HB is extremely simple: - Tag computes noisy parity. - **HBN** is extremely simple: - Tag computes noisy bilinear function. - Interestingly, **HB**^N is not the first bilinear protocol: [KPCJVII] can be rewritten as applying a noisy bilinear map - HB is extremely simple: - Tag computes noisy parity. - HBN is extremely simple: - Tag computes noisy bilinear function. - Interestingly, **HB**^N is not the first bilinear protocol: [KPCJVII] can be rewritten as applying a noisy bilinear map - New technique for defending against verify queries: Probabilistic Verification. - \Re computes $\mathbf{w}_i = \mathbf{a}^T \mathbf{X} \mathbf{b} + \mathbf{f}_i$ • Define \oplus : $[0,1] \times [0,1] \rightarrow [0,1]$: Ber_{\varepsilon} \oplus Ber_{\varphi} = Ber_{\varepsilon} - Define \oplus : $[0,1] \times [0,1] \rightarrow [0,1]$: Ber_{\varepsilon} \oplus Ber_{\varphi} = Ber_{\varepsilon} - $3(q-1) + q(3-1) = q \oplus 3$ - \oplus restricted to $Z_2 \times Z_2$ is equivalent to \oplus - Define \oplus : $[0,1] \times [0,1] \rightarrow [0,1]$: Ber_{\varepsilon} \oplus Ber_{\varepsilon} = Ber_{\varepsilon} - $3(q-1) + q(3-1) = q \oplus 3$ - \oplus restricted to $Z_2 \times Z_2$ is equivalent to \oplus - $\frac{1}{2}$ annihilates: $\rho \oplus \frac{1}{2} = \frac{1}{2}$ - Define \oplus : $[0,1] \times [0,1] \rightarrow [0,1]$: Ber_{\varepsilon} \oplus Ber_{\varepsilon} = Ber_{\varepsilon} - $3(q-1) + q(3-1) = q \oplus 3 \cdot$ - \oplus restricted to $Z_2 \times Z_2$ is equivalent to \oplus - $\frac{1}{2}$ annihilates: $\rho \oplus \frac{1}{2} = \frac{1}{2}$ - $Pr[Ber_{\varepsilon} = b] = b \oplus \overline{\varepsilon}$ - $Pr[(\mathbf{a},b) \leftarrow LPN_{\varepsilon}^{\mathbf{x}}] = 2^{-n}(\mathbf{a}^{\mathsf{T}}\mathbf{x} \oplus b \oplus \overline{\varepsilon})$ - $\Pr[(\mathbf{a},b) \leftarrow LSN_{\rho,\epsilon}^{\mathbf{x}}] = (b \oplus \overline{\rho})(b \oplus \mathbf{a}^{\mathsf{T}}\mathbf{x} \oplus \overline{\epsilon})2^{-n+1}$ # LPN_E \leq LSN_{p,\epsilon} \leq LPN_E - LSN_{ρ,ε}* is a method of producing a noisy subspace for a, using LPN_ε* - · Obtain b from Berp - Sample LPN_ε* until b=b - We can annihilate, conditionally - b \leftarrow Ber $\frac{1}{2}$ when $\mathbf{a}^{\mathsf{T}}\mathbf{x} = 1$ # Game Sequence: Overall Idea - · Phase I & II keys: X_j & Y_j - Initially, $X_0 = Y_0$ - At each step, add random rank I matrix: - $(X,Y) \rightarrow (X+(t+r)s^{T},Y+ts^{T}) \rightarrow (X,Y+rs^{T})$ - · With each layer, X_j and Y_j grow further apart - after sufficiently many applications, $a^T X_j b^T$ is completely independent of $a^T Y_j b^T$ - MIM-secure HB-like protocol - Simple, Efficient - Technical tools may be useful elsewhere - Available on eprint: 2011/350 - MIM-secure HB-like protocol - Simple, Efficient - Technical tools may be useful elsewhere - Available on eprint: 2011/350 - Open question: Improve efficiency - HB, HB⁺ are O(n²) computation - MIM-secure HB-like protocol - Simple, Efficient - Technical tools may be useful elsewhere - Available on eprint: 2011/350 - Open question: Improve efficiency - HB, HB⁺ are O(n²) computation - HBN and [KPCJV] achieve O(n3) computation - MIM-secure HB-like protocol - Simple, Efficient - Technical tools may be useful elsewhere - Available on eprint: 2011/350 - Open question: Improve efficiency - HB, HB⁺ are O(n²) computation - HBN and [KPCJV] achieve O(n³) computation - In upcoming work [BN] obtain $\mathbf{\omega}(n^2)$ - via ω(log n) rank matrix key - and Four Russians Matrix Multiplication trick