
Consensus in the Asynchronous Hybrid Byzantine Model with Optimal Resilience

Megumi Ando Moses Liskov {mando, mliskov}@mitre.org

Byzantine fault tolerance

- Single adversary adaptively corrupts nodes
 - Corrupted ("Byzantine") nodes send arbitrary messages
- Asynchronous network model
 - Honest messages can be delayed arbitrarily
- Lower bound: n > 3t
 - n: number of nodes
 - t: corruption limit
- Critical problems:
 - reliable broadcast
 - consensus

Crash tolerance and hybrid models

- In crash tolerance (fail stop)
 - Single adversary adaptively crashes nodes
 - Crashed nodes cannot send messages
 - Lower bound: n > 2t

Crash tolerance and hybrid models

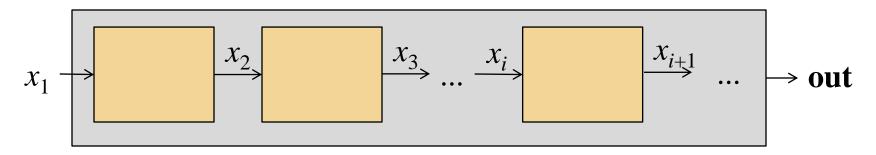
In crash tolerance (fail stop)

- Single adversary adaptively crashes nodes
- Crashed nodes cannot send messages
- Lower bound: n > 2t
- Hybrid Byzantine model
 - Single adversary adaptively chooses to crash or corrupt nodes
 - Crashed nodes cannot send messages
 - Corrupted nodes send messages of adversary's choice
 - Up to b corruptions, up to t total crashes or corruptions

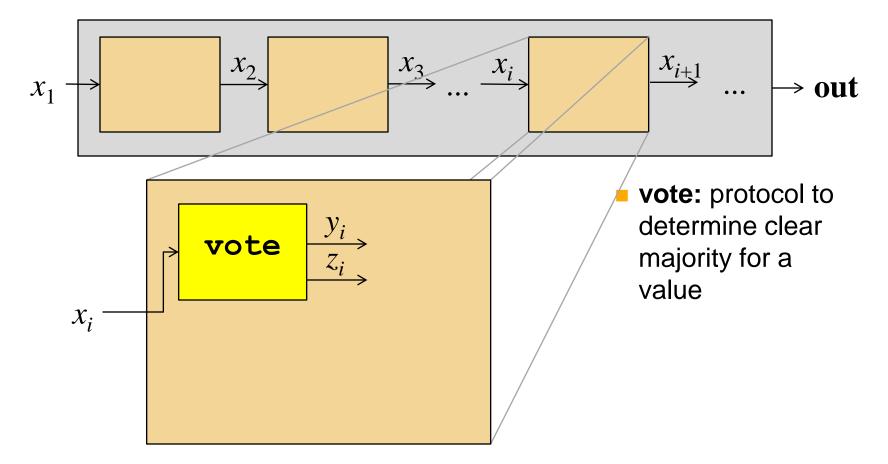
Crash tolerance and hybrid models

In crash tolerance (fail stop)

- Single adversary adaptively crashes nodes
- Crashed nodes cannot send messages
- Lower bound: n > 2t
- Hybrid Byzantine model
 - Single adversary adaptively chooses to crash or corrupt nodes
 - Crashed nodes cannot send messages
 - Corrupted nodes send messages of adversary's choice
 - Up to b corruptions, up to t total crashes or corruptions
- Our results:
 - Lower bound: n > 2t+b
 - Optimal size protocols for reliable broadcast and consensus


Principles

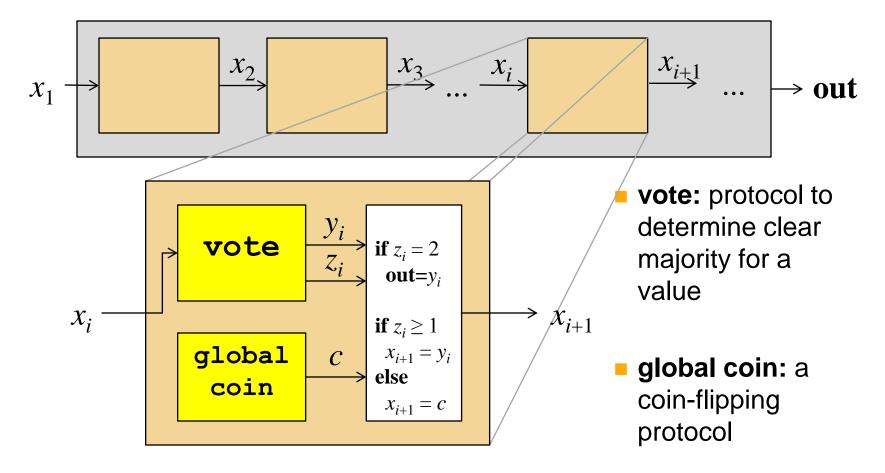
- With n = 3t+1 nodes and up to t Byzantine:
 - Can wait for n-t responses in an asynchronous network
 - Of the ones we get responses from, at least t+1 are honest
 - t+1 honest nodes must be sufficient to force progress


Principles

- With n = 3t+1 nodes and up to t Byzantine:
 - Can wait for n-t responses in an asynchronous network
 - Of the ones we get responses from, at least t+1 are honest
 - t+1 honest nodes must be sufficient to force progress
- With n = 2t+b+1 nodes in the Hybrid Byzantine model:
 - Can still wait for n-t responses in an asynchronous network
 - Of them, at least t+1 were honest at the time
 - But only b+1 must *remain* honest
 - Thus, b+1 honest nodes must be sufficient to force progress

Approach from Canetti and Rabin and earlier papers

Approach from Canetti and Rabin and earlier papers



Approach from Canetti and Rabin and earlier papers

MITRE

Approach from Canetti and Rabin and earlier papers

MITRE

Vote protocol: fully Byzantine

Protocol of Canetti-Rabin 1993: Let $n \ge 3t+1$.

Player P_i with input x_i :

- 1. a-cast (**input**, i, x_i)
- 2. Complete n-t **input** a-casts; set vote v_i to majority of input values.
- 3. a-cast (**vote**, i, v_i)
- 4. Wait to complete *n*-*t* consistent **vote** a-casts; set revote rv_i to majority of vote values.
- 5. a-cast (**re-vote**, i, rv_i)
- 6. Wait to complete *n*-*t* consistent **re-vote** a-casts.
- 7. If all **votes** agree on σ , output (σ ,2). Else if all **re-votes** agree on σ , output (σ ,1). Otherwise, output (0,0).

Size of intersection (*n*-2*t*) of two honest nodes' views guarantees unanimity in one is a majority in the other: 2(t+1) > n-t.

n-2t = b+1 not large enough.

MITRE

Vote protocol: hybrid Byzantine

Our Protocol. Let $n \ge 2t + b + 1$.

Player P_i with input x_i :

- 1. a-cast (**input**, i, x_i)
- 2. Complete n-t **input** a-casts; set vote v_i to majority of input values.
- 3. a-cast (**vote**, i, v_i)
- 4. Wait to complete *n*-*t* consistent **vote** a-casts; set revote rv_i to majority of vote values.
- 5. a-cast (**re-vote**, i, rv_i)
- 6. Wait to complete *n*-*t* consistent **re-vote** a-casts.
- 7. If all **votes** agree on σ , output (σ ,2). Else if all **re-votes** agree on σ , output (σ ,1). Otherwise, output (0,0).

Vote protocol: hybrid Byzantine

```
Our Protocol. Let n \ge 2t + b + 1.
```

Player P_i with input x_i :

- 1. a-cast (**input**, i, x_i)
- 2. Complete n-t **input** a-casts; set vote v_i to majority of input values.
- 3. a-cast (**vote**, i, v_i)
- 4. Wait to complete *n*-*t* consistent **vote** a-casts; set revote rv_i to majority of vote values.
- 5. a-cast (**re-vote**, i, rv_i)
- 6. Wait to complete *n*-*t* consistent **re-vote** a-casts.
- 7. If all **votes** agree on σ , output (σ ,2). Else if all **re-votes** agree on σ , output (σ ,1). Otherwise, output (0,0).

Vote protocol: hybrid Byzantine

Our Protocol. Let $n \ge 2t + b + 1$.

Player P_i with input x_i :

- 1. a-cast (**input**, i, x_i)
- 2. Complete n-t **input** a-casts; set vote v_i to majority of input values.
- 3. a-cast (**vote**, i, v_i)
- 4. Wait to complete *n*-*t* consistent **vote** a-casts; set S_i to set of **vote** senders.
- 5. a-cast (set, i, S_i)
- 6. Wait to complete *n*-*t* consistent **set** a-casts; set re-vote rv_i to majority of votes from members of all sets.
- 7. a-cast (**re-vote**, i, rv_i)
- 8. Wait to complete *n*-*t* consistent **re-vote** a-casts.
- 9. If all **votes** agree on σ , output (σ ,2). Else if all **re-votes** agree on σ , output (σ ,1). Otherwise, output (0,0).

set messages guarantee the intersection of two honest nodes' views has size at least *n*-*t*.

